Advanced Biometrics with Deep Learning
Download Url(s)
https://mdpi.com/books/pdfview/book/2636Contributor(s)
Jin, Andrew (editor)
Leng, Lu (editor)
Language
EnglishAbstract
Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others.
Webshop link
https://mdpi.com/books/pdfview ...ISBN
9783039366989, 9783039366996Publisher website
www.mdpi.com/booksPublication date and place
Basel, Switzerland, 2020Classification
History of engineering and technology