Framework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos

Download Url(s)
https://www.ksp.kit.edu/9783731506423Author(s)
Janya-anurak, Chettapong
Language
EnglishAbstract
In this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.
Keywords
ParameterschätzungUncertainty Quantification; Parameter estimation; verteilt-parametrische Systeme; Sensitivity Analysis; generalized polynomial chaos; Distributed Parameter Systems; Sensitivitätsanalyse; Unsicherheit QuantifizierungISBN
9783731506423Publisher
KIT Scientific PublishingPublisher website
http://www.ksp.kit.edu/Publication date and place
2017Series
Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe,Classification
Computer science