dc.contributor.author | Ali, Mumtaz | * |
dc.contributor.author | Smarandache, Florentin | * |
dc.contributor.author | Zhang, Xiaohong | * |
dc.date.accessioned | 2021-02-11T08:02:24Z | |
dc.date.available | 2021-02-11T08:02:24Z | |
dc.date.issued | 2019 | * |
dc.date.submitted | 2019-04-05 10:34:31 | * |
dc.identifier | 32843 | * |
dc.identifier.uri | https://directory.doabooks.org/handle/20.500.12854/40632 | |
dc.description.abstract | Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (<A>, <neutA>, <antiA>), where <A> is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, <antiA> is the opposite of <A>, while <neutA> is the neutral (or indeterminate) between them, i.e., neither <A> nor <antiA>.Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc. | * |
dc.language | English | * |
dc.subject | QA1-939 | * |
dc.subject | Q1-390 | * |
dc.subject.classification | bic Book Industry Communication::P Mathematics & science | en_US |
dc.subject.other | similarity measure | * |
dc.subject.other | generalized partitioned Bonferroni mean operator | * |
dc.subject.other | normal distribution | * |
dc.subject.other | school administrator | * |
dc.subject.other | complex neutrosophic set | * |
dc.subject.other | expert set | * |
dc.subject.other | neutrosophic classification | * |
dc.subject.other | multi-attribute decision-making (MADM) | * |
dc.subject.other | multi-criteria decision-making (MCDM) techniques | * |
dc.subject.other | criterion functions | * |
dc.subject.other | matrix representation | * |
dc.subject.other | possibility degree | * |
dc.subject.other | quantum computation | * |
dc.subject.other | typhoon disaster evaluation | * |
dc.subject.other | NT-subgroup | * |
dc.subject.other | generalized neutrosophic ideal | * |
dc.subject.other | three-way decisions | * |
dc.subject.other | decision-making | * |
dc.subject.other | G-metric | * |
dc.subject.other | multiple attribute group decision-making (MAGDM) | * |
dc.subject.other | SVM | * |
dc.subject.other | semi-neutrosophic triplets | * |
dc.subject.other | LA-semihypergroups | * |
dc.subject.other | power operator | * |
dc.subject.other | fuzzy graph | * |
dc.subject.other | neutrosophic cubic graphs | * |
dc.subject.other | LNGPBM operator | * |
dc.subject.other | neutrosophic c-means clustering | * |
dc.subject.other | (commutative) ideal | * |
dc.subject.other | region growing | * |
dc.subject.other | clustering algorithm | * |
dc.subject.other | Neutrosophic cubic sets | * |
dc.subject.other | forecasting | * |
dc.subject.other | vector similarity measure | * |
dc.subject.other | totally dependent-neutrosophic soft set | * |
dc.subject.other | Fenyves identities | * |
dc.subject.other | TODIM model | * |
dc.subject.other | similarity measures | * |
dc.subject.other | CI-algebra | * |
dc.subject.other | Dice measure | * |
dc.subject.other | de-neutrosophication methods | * |
dc.subject.other | DSmT | * |
dc.subject.other | semigroup | * |
dc.subject.other | VIKOR model | * |
dc.subject.other | multigranulation neutrosophic rough set (MNRS) | * |
dc.subject.other | simplified neutrosophic linguistic numbers | * |
dc.subject.other | Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) | * |
dc.subject.other | multi-criteria group decision making | * |
dc.subject.other | multi-attribute group decision-making (MAGDM) | * |
dc.subject.other | exponential operational laws of interval neutrosophic numbers | * |
dc.subject.other | simplified neutrosophic weighted averaging operator | * |
dc.subject.other | neutro-epimorphism | * |
dc.subject.other | Choquet integral | * |
dc.subject.other | fixed point theory (FPT) | * |
dc.subject.other | computability | * |
dc.subject.other | neutrosophic triplet set | * |
dc.subject.other | interval-valued neutrosophic set | * |
dc.subject.other | simplified neutrosophic sets (SNSs) | * |
dc.subject.other | totally dependent-neutrosophic set | * |
dc.subject.other | Maclaurin symmetric mean | * |
dc.subject.other | recursive enumerability | * |
dc.subject.other | loop | * |
dc.subject.other | photovoltaic plan | * |
dc.subject.other | intersection | * |
dc.subject.other | neutrosophic bipolar fuzzy set | * |
dc.subject.other | big data | * |
dc.subject.other | inclusion relation | * |
dc.subject.other | dual aggregation operators | * |
dc.subject.other | Hamming distance | * |
dc.subject.other | neutro-automorphism | * |
dc.subject.other | neutrosophic set theory | * |
dc.subject.other | multiple attribute decision-making | * |
dc.subject.other | multicriteria decision-making | * |
dc.subject.other | pseudo primitive elements | * |
dc.subject.other | medical diagnosis | * |
dc.subject.other | neutrosophic G-metric | * |
dc.subject.other | bipolar fuzzy set | * |
dc.subject.other | NC power dual MM operator (NCPDMM) operator | * |
dc.subject.other | neutrosophic sets (NSs) | * |
dc.subject.other | emerging technology commercialization | * |
dc.subject.other | neutrosophic triplet groups | * |
dc.subject.other | probabilistic rough sets over two universes | * |
dc.subject.other | neutrosophic triplet set (NTS) | * |
dc.subject.other | neutrosophic triplet cosets | * |
dc.subject.other | MM operator | * |
dc.subject.other | TOPSIS | * |
dc.subject.other | cloud model | * |
dc.subject.other | extended ELECTRE III | * |
dc.subject.other | extended TOPSIS method | * |
dc.subject.other | 2ingle-valued neutrosophic set | * |
dc.subject.other | dual domains | * |
dc.subject.other | probabilistic single-valued (interval) neutrosophic hesitant fuzzy set | * |
dc.subject.other | Jaccard measure | * |
dc.subject.other | data mining | * |
dc.subject.other | BE-algebra | * |
dc.subject.other | neutrosophic soft set | * |
dc.subject.other | aggregation operators | * |
dc.subject.other | image segmentation | * |
dc.subject.other | multiple attribute decision making (MADM) | * |
dc.subject.other | neutrosophic duplets | * |
dc.subject.other | fundamental neutro-homomorphism theorem | * |
dc.subject.other | neutro-homomorphism | * |
dc.subject.other | power aggregation operator | * |
dc.subject.other | linear and non-linear neutrosophic number | * |
dc.subject.other | multi-attribute decision making | * |
dc.subject.other | first neutro-isomorphism theorem | * |
dc.subject.other | MCGDM problems | * |
dc.subject.other | neutrosophic bipolar fuzzy weighted averaging operator | * |
dc.subject.other | Bonferroni mean | * |
dc.subject.other | analytic hierarchy process (AHP) | * |
dc.subject.other | quasigroup | * |
dc.subject.other | action learning | * |
dc.subject.other | weak commutative neutrosophic triplet group | * |
dc.subject.other | generalized aggregation operators | * |
dc.subject.other | single valued neutrosophic multiset (SVNM) | * |
dc.subject.other | sustainable supplier selection problems (SSSPs) | * |
dc.subject.other | LNGWPBM operator | * |
dc.subject.other | skin cancer | * |
dc.subject.other | oracle computation | * |
dc.subject.other | fault diagnosis | * |
dc.subject.other | interval valued neutrosophic support soft sets | * |
dc.subject.other | neutrosophic triplet normal subgroups | * |
dc.subject.other | soft set | * |
dc.subject.other | multi-criteria decision-making | * |
dc.subject.other | neutrosophic triplet | * |
dc.subject.other | generalized group | * |
dc.subject.other | neutrosophic multiset (NM) | * |
dc.subject.other | two universes | * |
dc.subject.other | algorithm | * |
dc.subject.other | multi-attribute decision making (MADM) | * |
dc.subject.other | PA operator | * |
dc.subject.other | BCI-algebra | * |
dc.subject.other | neutrosophic triplet group (NTG) | * |
dc.subject.other | single valued trapezoidal neutrosophic number | * |
dc.subject.other | quasi neutrosophic triplet loop | * |
dc.subject.other | neutrosophy | * |
dc.subject.other | complex neutrosophic graph | * |
dc.subject.other | S-semigroup of neutrosophic triplets | * |
dc.subject.other | and second neutro-isomorphism theorem | * |
dc.subject.other | MADM | * |
dc.subject.other | dermoscopy | * |
dc.subject.other | linguistic neutrosophic sets | * |
dc.subject.other | defuzzification | * |
dc.subject.other | construction project | * |
dc.subject.other | potential evaluation | * |
dc.subject.other | neutrosophic big data | * |
dc.subject.other | decision-making algorithms | * |
dc.subject.other | neutosophic extended triplet subgroups | * |
dc.subject.other | applications of neutrosophic cubic graphs | * |
dc.subject.other | fuzzy time series | * |
dc.subject.other | TFNNs VIKOR method | * |
dc.subject.other | two-factor fuzzy logical relationship | * |
dc.subject.other | oracle Turing machines | * |
dc.subject.other | grasp type | * |
dc.subject.other | interval neutrosophic sets | * |
dc.subject.other | multi-criteria group decision-making | * |
dc.subject.other | interval neutrosophic weighted exponential aggregation (INWEA) operator | * |
dc.subject.other | power aggregation operators | * |
dc.subject.other | neutrosophic triplet group | * |
dc.subject.other | MGNRS | * |
dc.subject.other | 2-tuple linguistic neutrosophic sets (2TLNSs) | * |
dc.subject.other | computation | * |
dc.subject.other | filter | * |
dc.subject.other | multi-valued neutrosophic set | * |
dc.subject.other | integrated weight | * |
dc.subject.other | Bol-Moufang | * |
dc.subject.other | prioritized operator | * |
dc.subject.other | interval number | * |
dc.subject.other | logic | * |
dc.subject.other | pseudo-BCI algebra | * |
dc.subject.other | interval neutrosophic set (INS) | * |
dc.subject.other | neutrosophic rough set | * |
dc.subject.other | soft sets | * |
dc.subject.other | Q-neutrosophic | * |
dc.subject.other | Linguistic neutrosophic sets | * |
dc.subject.other | fuzzy measure | * |
dc.subject.other | homomorphism theorem | * |
dc.subject.other | commutative generalized neutrosophic ideal | * |
dc.subject.other | neutrosophic association rule | * |
dc.subject.other | shopping mall | * |
dc.subject.other | dependent degree | * |
dc.subject.other | Q-linguistic neutrosophic variable set | * |
dc.subject.other | quasi neutrosophic loops | * |
dc.subject.other | symmetry | * |
dc.subject.other | neutrosophic sets | * |
dc.subject.other | neutrosophic logic | * |
dc.subject.other | neutrosophic cubic set | * |
dc.subject.other | complement | * |
dc.subject.other | robotic dexterous hands | * |
dc.subject.other | neutro-monomorphism | * |
dc.subject.other | group | * |
dc.subject.other | analytic network process | * |
dc.subject.other | Muirhead mean | * |
dc.subject.other | maximizing deviation | * |
dc.subject.other | classical group of neutrosophic triplets | * |
dc.subject.other | neutrosophic triplet quotient groups | * |
dc.subject.other | generalized neutrosophic set | * |
dc.subject.other | multi-criteria group decision-making (MCGDM) | * |
dc.subject.other | support soft sets | * |
dc.subject.other | decision making | * |
dc.subject.other | generalized De Morgan algebra | * |
dc.subject.other | multiple attribute group decision making (MAGDM) | * |
dc.subject.other | single-valued neutrosophic multisets | * |
dc.subject.other | 2TLNNs TODIM method | * |
dc.subject.other | membership | * |
dc.subject.other | grasping configurations | * |
dc.subject.other | single valued neutrosophic set (SVNS) | * |
dc.subject.other | multiple attribute decision making problem | * |
dc.subject.other | SWOT analysis | * |
dc.subject.other | neutrosophic clustering | * |
dc.subject.other | hesitant fuzzy set | * |
dc.subject.other | interval neutrosophic numbers (INNs) | * |
dc.subject.other | quasi neutrosophic triplet group | * |
dc.subject.other | triangular fuzzy neutrosophic sets (TFNSs) | * |
dc.subject.other | interdependency of criteria | * |
dc.subject.other | aggregation operator | * |
dc.subject.other | cosine measure | * |
dc.subject.other | neutrosophic set | * |
dc.subject.other | neutrosophic computation | * |
dc.subject.other | decision-making trial and evaluation laboratory (DEMATEL) | * |
dc.subject.other | partial metric spaces (PMS) | * |
dc.subject.other | NCPMM operator | * |
dc.subject.other | clustering | * |
dc.title | Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets | * |
dc.type | book | |
oapen.identifier.doi | 10.3390/books978-3-03897-385-0 | * |
oapen.relation.isPublishedBy | 46cabcaa-dd94-4bfe-87b4-55023c1b36d0 | * |
oapen.relation.isbn | 9783038973843 | * |
oapen.pages | 478 | * |
oapen.volume | 1 | * |
oapen.edition | 1st | * |