Técnicas de minería de datos para determinar la deserción escolar
Author(s)
Apaza-Tarqui, Alejandro
Borda-Navedos, Walter
Cayo, Noemí
Huanca-Suaquita, Jhon
Version
PublishedLanguage
SpanishAbstract
The objective of this research was to determine the data mining techniques and the associated factors that allow the segmentation of students at risk of dropping out at the Instituto Superior Tecnológico Privado ISTEPSA, in Andahuaylas (Peru). For this purpose, Automatic Learning and Data Mining techniques implemented in WEKA software were applied: The CfsSubsetEval evaluation method and the BestFirst search method were applied to select the most significant factors, to establish the patterns the association algorithm A was used. priori and to segment, the Expected Value Maximization algorithm "Expectation Maximissation" (EM) and Kohonen's self-organizing maps (Self Organizing Maps, SOM) were used. The following results were obtained: 06 significant factors: Motivation of sessions, Laboratories and Classrooms of the Institution, Acceptance of the professional career, Repeated Courses in the school and Academic Semester; For dropout patterns, 100% of students who dropout rate motivation, classrooms, and laboratories as deficient; In addition, 96% consider the professional career they are studying to be deficient and 90% of those who withdraw are from the fourth semester; In the segmentation, 3 groups have been constructed with the EM algorithm and 4 groups for the SOM algorithm, where it is observed that the academic factors are decisive for the dropout of students. La presente investigación tuvo por objetivo determinar las técnicas de minería de datos y los factores asociados que permitan segmentar los alumnos con riesgo de deserción en el Instituto Superior Tecnológico Privado ISTEPSA, en Andahuaylas (Perú). Para este fin se aplicaron técnicas de Aprendizaje Automático y Minería de Datos implementadas en software WEKA: Se aplicó el método de evaluación CfsSubsetEval y el método de búsqueda BestFirst para seleccionar los factores de mayor significancia, para establecer los patrones se usó el algoritmo de asociación A priori y para segmentar, se usó el algoritmo de Maximización del Valor Esperado “Expectation Maximissation” (EM) y mapas auto organizados de Kohonen(Self Organizing Maps, SOM). Se obtuvo los siguientes resultados: 06 factores significativos: Motivación de sesiones, Laboratorios y Aulas de la Institución, Aceptación de la carrera profesional, Cursos Repetidos en el colegio y Semestre Académico; para los patrones de deserción el 100% de los estudiantes que se retiran califican como deficiente la motivación, aulas y laboratorios; además el 96% consideran deficiente a la carrera profesional que estudian y 90% de los que se retiran son de cuarto semestre; En la segmentación se ha construido 3 grupos con el algoritmo EM y 4 grupos para el algoritmo SOM, donde se observa que los factores académicos son determinantes para la deserción de alumnos.
Keywords
deserción estudiantil; aprendizaje automático; minería de datosWebshop link
https://editorial.inudi.edu.pe ...ISBN
978-612-5069-42-9Publisher website
https://editorial.inudi.edu.pe/index.php/editorialinudiPublication date and place
Puno, 2022-11-09Classification
Instruments and instrumentation