Show simple item record

dc.contributor.editorNiazi, Imran Khan
dc.contributor.editorNaseer, Noman
dc.contributor.editorSantosa, Hendrik
dc.date.accessioned2022-05-06T11:35:31Z
dc.date.available2022-05-06T11:35:31Z
dc.date.issued2022
dc.identifierONIX_20220506_9783036537207_275
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/81209
dc.description.abstractNon-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions.
dc.languageEnglish
dc.subject.classificationbic Book Industry Communication::M Medicine::MB Medicine: general issues::MBG Medical equipment & techniques
dc.subject.othermovement intention
dc.subject.otherbrain–computer interface
dc.subject.othermovement-related cortical potential
dc.subject.otherneurorehabilitation
dc.subject.otherphonocardiogram
dc.subject.othermachine learning
dc.subject.otherempirical mode decomposition
dc.subject.otherfeature extraction
dc.subject.othermel-frequency cepstral coefficients
dc.subject.othersupport vector machines
dc.subject.othercomputer aided diagnosis
dc.subject.othercongenital heart disease
dc.subject.otherstatistical analysis
dc.subject.otherconvolutional neural network (CNN)
dc.subject.otherlong short-term memory (LSTM)
dc.subject.otheremotion recognition
dc.subject.otherEEG
dc.subject.otherECG
dc.subject.otherGSR
dc.subject.otherdeep neural network
dc.subject.otherphysiological signals
dc.subject.otherelectroencephalography
dc.subject.otherBrain-Computer Interface
dc.subject.othermultiscale principal component analysis
dc.subject.othersuccessive decomposition index
dc.subject.othermotor imagery
dc.subject.othermental imagery
dc.subject.otherclassification
dc.subject.otherhybrid brain-computer interface (BCI)
dc.subject.otherhome automation
dc.subject.otherelectroencephalogram (EEG)
dc.subject.othersteady-state visually evoked potential (SSVEP)
dc.subject.othereye blink
dc.subject.othershort-time Fourier transform (STFT)
dc.subject.otherconvolution neural network (CNN)
dc.subject.otherhuman machine interface (HMI)
dc.subject.otherrehabilitation
dc.subject.otherwheelchair
dc.subject.otherquadriplegia
dc.subject.otherRaspberry Pi
dc.subject.otherimage gradient
dc.subject.otherAMR voice
dc.subject.otherOpen-CV
dc.subject.otherimage processing
dc.subject.otheracoustic
dc.subject.otherstartle
dc.subject.otherreaction
dc.subject.otherresponse
dc.subject.otherreflex
dc.subject.otherblink
dc.subject.othermobile
dc.subject.othersound
dc.subject.otherstroke
dc.subject.otherEMG
dc.subject.otherbrain-computer interface
dc.subject.othermyoelectric control
dc.subject.otherpattern recognition
dc.subject.otherfunctional near-infrared spectroscopy
dc.subject.otherz-score method
dc.subject.otherchannel selection
dc.subject.otherregion of interest
dc.subject.otherchannel of interest
dc.subject.otherrespiratory rate (RR)
dc.subject.otherElectrocardiogram (ECG)
dc.subject.otherECG derived respiration (EDR)
dc.subject.otherauscultation sites
dc.subject.otherpulse plethysmograph
dc.subject.otherbiomedical signal processing
dc.subject.otherfeature selection and reduction
dc.subject.otherdiscrete wavelet transform
dc.subject.otherhypertension
dc.titleSignal Processing Using Non-invasive Physiological Sensors
dc.typebook
oapen.identifier.doi10.3390/books978-3-0365-3719-1
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0
oapen.relation.isbn9783036537207
oapen.relation.isbn9783036537191
oapen.pages222
oapen.place.publicationBasel


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/