Show simple item record

dc.contributor.authorYang, Bisheng*
dc.contributor.authorAwrangjeb, Mohammad*
dc.contributor.authorHu, Xiangyun*
dc.contributor.authorTian, Jiaojiao*
dc.date.accessioned2021-02-12T01:47:28Z
dc.date.available2021-02-12T01:47:28Z
dc.date.issued2020*
dc.date.submitted2020-04-07 23:07:09*
dc.identifier44862*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/58168
dc.description.abstractBuilding extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D*
dc.languageEnglish*
dc.subjectTA1-2040*
dc.subjectTH1-9745*
dc.subjectT1-995*
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technologyen_US
dc.subject.otherobject recognition*
dc.subject.othern/a*
dc.subject.othervery high resolution*
dc.subject.otherimage fusion*
dc.subject.otherregularization*
dc.subject.othersimple linear iterative clustering (SLIC)*
dc.subject.otherdigital building height*
dc.subject.otherbuilding*
dc.subject.otherDTM extraction*
dc.subject.other3D reconstruction*
dc.subject.otherimagery*
dc.subject.otherGIS data*
dc.subject.otherhigh-resolution satellite images*
dc.subject.otherbuilding edges detection*
dc.subject.otherhigh resolution optical images*
dc.subject.otherpoint clouds*
dc.subject.otherbuilding extraction*
dc.subject.otherland-use*
dc.subject.othermorphological attribute filter*
dc.subject.otherdeep convolutional neural network*
dc.subject.otherboundary extraction*
dc.subject.otherhigh spatial resolution remotely sensed imagery*
dc.subject.otherremote sensing*
dc.subject.otherfully convolutional network*
dc.subject.other3-D*
dc.subject.othersemantic segmentation*
dc.subject.othermorphological profile*
dc.subject.othermodelling*
dc.subject.otherroof segmentation*
dc.subject.otherboundary regulated network*
dc.subject.other3D urban expansion*
dc.subject.otherfeature fusion*
dc.subject.otherdeveloping city*
dc.subject.othervery high resolution imagery*
dc.subject.otherbuilding detection*
dc.subject.otherocclusion*
dc.subject.otherchange detection*
dc.subject.otherbuilding index*
dc.subject.otherMassachusetts buildings dataset*
dc.subject.otherelevation map*
dc.subject.otherhigh spatial resolution remote sensing imagery*
dc.subject.otherdata fusion*
dc.subject.othergenerative adversarial network*
dc.subject.otherunmanned aerial vehicle (UAV)*
dc.subject.otherhigh-resolution aerial images*
dc.subject.otherultra-hierarchical sampling*
dc.subject.otherU-Net*
dc.subject.otherbinary decision network*
dc.subject.otherstraight-line segment matching*
dc.subject.otheroutline extraction*
dc.subject.otherbuilding boundary extraction*
dc.subject.otherdeep learning*
dc.subject.otheraerial images*
dc.subject.othermobile laser scanning*
dc.subject.otherfeature extraction*
dc.subject.othermultiscale Siamese convolutional networks (MSCNs)*
dc.subject.otherurban building extraction*
dc.subject.otherhigh-resolution aerial imagery*
dc.subject.othermathematical morphology*
dc.subject.otherindoor modelling*
dc.subject.otherGabor filter*
dc.subject.otheractive contour model*
dc.subject.otherattention mechanism*
dc.subject.otherconvolutional neural network*
dc.subject.otherLiDAR*
dc.subject.otheraccuracy analysis*
dc.subject.otherpoint cloud*
dc.subject.otherfeature-level-fusion*
dc.subject.otherbuilding reconstruction*
dc.subject.otherricher convolution features*
dc.subject.otheropen data*
dc.subject.otherVHR remote sensing imagery*
dc.subject.otherInria aerial image labeling dataset*
dc.subject.otherLiDAR point cloud*
dc.subject.othermethod comparison*
dc.subject.other5G signal simulation*
dc.subject.otherreconstruction*
dc.subject.otherbuilding regularization technique*
dc.subject.otherweb-net*
dc.titleRemote Sensing based Building Extraction*
dc.typebook
oapen.identifier.doi10.3390/books978-3-03928-383-5*
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0*
oapen.relation.isbn9783039283835*
oapen.relation.isbn9783039283828*
oapen.pages442*
oapen.edition1st*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/