Export citation

Show simple item record

dc.contributor.authorEtcheverry Venturini, Lorena*
dc.contributor.authorChreties Ceriani, Christian*
dc.contributor.authorCastro Casales, Alberto*
dc.contributor.authorGorgoglione, Angela*
dc.date.accessioned2021-02-11T22:01:02Z
dc.date.available2021-02-11T22:01:02Z
dc.date.issued2020*
dc.date.submitted2020-06-09 16:38:57*
dc.identifier46098*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/55528
dc.description.abstractheavily Environmental mathematical models represent one of the key aids for scientists to forecast, create, and evaluate complex scenarios. These models rely on the data collected by direct field observations. However, assembly of a functional and comprehensive dataset for any environmental variable is difficult, mainly because of i) the high cost of the monitoring campaigns and ii) the low reliability of measurements (e.g., due to occurrences of equipment malfunctions and/or issues related to equipment location). The lack of a sufficient amount of Earth science data may induce an inadequate representation of the response’s complexity in any environmental system to any type of input/change, both natural and human-induced. In such a case, before undertaking expensive studies to gather and analyze additional data, it is reasonable to first understand what enhancement in estimates of system performance would result if all the available data could be well exploited. Missing data imputation is an important task in cases where it is crucial to use all available data and not discard records with missing values. Different approaches are available to deal with missing data. Traditional statistical data completion methods are used in different domains to deal with single and multiple imputation problems. More recently, machine learning techniques, such as clustering and classification, have been proposed to complete missing data. This book showcases the body of knowledge that is aimed at improving the capacity to exploit the available data to better represent, understand, predict, and manage the behavior of environmental systems at all practical scales.*
dc.languageEnglish*
dc.subjectTA1-2040*
dc.subjectT1-995*
dc.subjectTA170-171*
dc.subject.othergeophysical monitoring*
dc.subject.otherdata scarcity*
dc.subject.othermissing data*
dc.subject.otherclimate extreme indices (CEIs)*
dc.subject.otherrule extraction*
dc.subject.otherDataset Licensedatabase*
dc.subject.otherdata assimilation*
dc.subject.otherdata imputation*
dc.subject.othersupport vector machines*
dc.subject.otherenvironmental observations*
dc.subject.othermulti-class classification*
dc.subject.otherearth-science data*
dc.subject.otherremote sensing*
dc.subject.othermagnetotelluric monitoring*
dc.subject.othersoil texture calculator*
dc.subject.othermachine learning*
dc.subject.otherClimPACT*
dc.subject.otherinvasive species*
dc.subject.otherspecies distribution modeling*
dc.subject.other3D-Var*
dc.subject.otherensemble learning*
dc.subject.otherdata quality*
dc.subject.otherwater quality*
dc.subject.othermicrohabitat*
dc.subject.otherk-Nearest Neighbors*
dc.subject.otherExpert Team on Climate Change Detection and Indices (ETCCDI)*
dc.subject.otherdecision trees*
dc.subject.otherprocessing*
dc.subject.otherattribute reduction*
dc.subject.otherExpert Team on Sector-specific Climate Indices (ET-SCI)*
dc.subject.othercore attribute*
dc.subject.otherrough set theory*
dc.subject.otherGLDAS*
dc.subject.otherarthropod vector*
dc.subject.otherenvironmental modeling*
dc.subject.otherstatistical methods*
dc.titleOvercoming Data Scarcity in Earth Science*
dc.typebook
oapen.identifier.doi10.3390/books978-3-03928-211-1*
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0*
virtual.oapen_relation_isPublishedBy.publisher_nameMDPI - Multidisciplinary Digital Publishing Institute
virtual.oapen_relation_isPublishedBy.publisher_websitewww.mdpi.com/books
oapen.relation.isbn9783039282111*
oapen.relation.isbn9783039282104*
oapen.pages94*
oapen.edition1st*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/