Objektsensitive Verfolgung und Klassifikation von Fußgängern mit verteilten Multi-Sensor-Trägern
Abstract
State estimation of an unknown number of objects remains a challenging topic - despite the existence of theoretically bayes-optimal multi-object-filters - due to numerous assumptions in the modeling process. This thesis evaluates such filters in real multi-object-multi-sensor scenarios and proposes necessary extensions to existing models. The main application of the thesis is indoor pedestrian tracking.
Keywords
Multi-Objekt-Verfolgung; verteilte Systeme; SensorenMulti-object-tracking; sensors; Objektklassifikation; object classification; pedestrian tracking; distributed systems; PersonenverfolgungISBN
9783731505297Publisher
KIT Scientific PublishingPublisher website
http://www.ksp.kit.edu/Publication date and place
2016Series
Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie,Classification
Technology: general issues