Show simple item record

dc.contributor.authorTamar Flash*
dc.contributor.authorAndrea d'Avella*
dc.contributor.authorThomas Schack*
dc.contributor.authorYuri P. Ivanenko*
dc.contributor.authorMartin Giese*
dc.date.accessioned2021-02-11T20:01:42Z
dc.date.available2021-02-11T20:01:42Z
dc.date.issued2016*
dc.date.submitted2017-02-03 17:04:57*
dc.identifier20293*
dc.identifier.issn16648714*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/53806
dc.description.abstractMastering a rich repertoire of motor behaviors, as humans and other animals do, is a surprising and still poorly understood outcome of evolution, development, and learning. Many degrees-of-freedom, non-linear dynamics, and sensory delays provide formidable challenges for controlling even simple actions. Modularity as a functional element, both structural and computational, of a control architecture might be the key organizational principle that the central nervous system employs for achieving versatility and adaptability in motor control. Recent investigations of muscle synergies, motor primitives, compositionality, basic action concepts, and related work in machine learning have contributed to advance, at different levels, our understanding of the modular architecture underlying rich motor behaviors. However, the existence and nature of the modules in the control architecture is far from settled. For instance, regularity and low-dimensionality in the motor output are often taken as an indication of modularity but could they simply be a byproduct of optimization and task constraints? Moreover, what are the relationships between modules at different levels, such as muscle synergies, kinematic invariants, and basic action concepts? One important reason for the new interest in understanding modularity in motor control from different viewpoints is the impressive development in cognitive robotics. In comparison to animals and humans, the motor skills of today’s best robots are limited and inflexible. However, robot technology is maturing to the point at which it can start approximating a reasonable spectrum of isolated perceptual, cognitive, and motor capabilities. These advances allow researchers to explore how these motor, sensory and cognitive functions might be integrated into meaningful architectures and to test their functional limits. Such systems provide a new test bed to explore different concepts of modularity and to address the interaction between motor and cognitive processes experimentally. Thus, the goal of this Research Topic is to review, compare, and debate theoretical and experimental investigations of the modular organization of the motor control system at different levels. By bringing together researchers seeking to understand the building blocks for coordinating many muscles, for planning endpoint and joint trajectories, and for representing motor and behavioral actions in memory we aim at promoting new interactions between often disconnected research areas and approaches and at providing a broad perspective on the idea of modularity in motor control. We welcome original research, methodological, theoretical, review, and perspective contributions from behavioral, system, and computational motor neuroscience research, cognitive psychology, and cognitive robotics.*
dc.languageEnglish*
dc.relation.ispartofseriesFrontiers Research Topics*
dc.subjectRC321-571*
dc.subjectQ1-390*
dc.subject.classificationthema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciencesen_US
dc.subject.otheraction representation*
dc.subject.othermuscle synergies*
dc.subject.otherMotor Primitives*
dc.subject.othermotor learning*
dc.subject.othercompositionality*
dc.subject.otherneural control of movement*
dc.subject.otherIntermittent control*
dc.subject.otherKinematic invariants*
dc.subject.otherControl architectures*
dc.subject.otherRobotics*
dc.titleModularity in motor control: from muscle synergies to cognitive action representation*
dc.typebook
oapen.identifier.doi10.3389/978-2-88919-805-4*
oapen.relation.isPublishedBybf5ce210-e72e-4860-ba9b-c305640ff3ae*
oapen.relation.isbn9782889198054*
oapen.pages792*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/