Afficher la notice abrégée

dc.contributor.authorNgo, Ha Duong*
dc.contributor.authorRasras, Mahmoud*
dc.contributor.authorElfadel, Ibrahim (Abe) M.*
dc.date.accessioned2021-02-11T19:15:16Z
dc.date.available2021-02-11T19:15:16Z
dc.date.issued2019*
dc.date.submitted2019-06-26 08:44:06*
dc.identifier33655*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/53145
dc.description.abstractMicro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.*
dc.languageEnglish*
dc.subjectTA1-2040*
dc.subjectT1-995*
dc.subject.classificationthema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technologyen_US
dc.subject.othermicromachining*
dc.subject.othern/a*
dc.subject.otherturbulent kinetic energy dissipation rate*
dc.subject.othermicroelectromechanical systems (MEMS) piezoresistive sensor chip*
dc.subject.otherWiFi-RSSI radio map*
dc.subject.otherstep detection*
dc.subject.otherbuilt-in self-test*
dc.subject.otherregularity of activity*
dc.subject.othermotion analysis*
dc.subject.othergait analysis*
dc.subject.otherfrequency*
dc.subject.otheracceleration*
dc.subject.otherMEMS accelerometer*
dc.subject.otherzero-velocity update*
dc.subject.otherrehabilitation assessment*
dc.subject.othervacuum microelectronic*
dc.subject.otherdance classification*
dc.subject.otherKerr noise*
dc.subject.otherMEMS*
dc.subject.othermicro machining*
dc.subject.otherMEMS sensors*
dc.subject.otherstereo visual-inertial odometry*
dc.subject.otherself-coaching*
dc.subject.otherminiaturization*
dc.subject.otherwavelet packet*
dc.subject.otherthree-axis acceleration sensor*
dc.subject.otherMEMS-IMU accelerometer*
dc.subject.otherperformance characterization*
dc.subject.otherelectrostatic stiffness*
dc.subject.otherdelaying mechanism*
dc.subject.otherthree-axis accelerometer*
dc.subject.otherangular-rate sensing*
dc.subject.otherindoor positioning*
dc.subject.otherwhispering-gallery-mode*
dc.subject.othersensitivity*
dc.subject.otherheat convection*
dc.subject.othermulti-axis sensing*
dc.subject.otherL-shaped beam*
dc.subject.otherstride length estimation*
dc.subject.otheractivity monitoring*
dc.subject.otherprocess optimization*
dc.subject.othermismatch of parasitic capacitance*
dc.subject.otherelectromechanical delta-sigma*
dc.subject.othercathode tips array*
dc.subject.otherin situ self-testing*
dc.subject.otherhigh acceleration sensor*
dc.subject.otherdeep learning*
dc.subject.othermarine environmental monitoring*
dc.subject.otheraccelerometer*
dc.subject.otherfault tolerant*
dc.subject.otherhostile environment*
dc.subject.othermicro-electro-mechanical systems (MEMS)*
dc.subject.otherlow-temperature co-fired ceramic (LTCC)*
dc.subject.otherclassification of horse gaits*
dc.subject.otherTaguchi method*
dc.subject.otherinterface ASIC*
dc.subject.othercapacitive transduction*
dc.subject.otherdigital resonator*
dc.subject.othersafety and arming system*
dc.subject.otherinertial sensors*
dc.subject.otherMEMS technology*
dc.subject.othersleep time duration detection*
dc.subject.otherfield emission*
dc.subject.otherprobe*
dc.subject.otherpiezoresistive effect*
dc.subject.othercapacitive accelerometer*
dc.subject.otherauto-encoder*
dc.subject.otherMEMS-IMU*
dc.subject.otherbody sensor network*
dc.subject.otheroptical microresonator*
dc.subject.otherwireless*
dc.subject.otherhybrid integrated*
dc.subject.othermode splitting*
dc.titleMEMS Accelerometers*
dc.typebook
oapen.identifier.doi10.3390/books978-3-03897-415-4*
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0*
oapen.relation.isbn9783038974154*
oapen.relation.isbn9783038974147*
oapen.pages252*
oapen.edition1st*


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

https://creativecommons.org/licenses/by-nc-nd/4.0/
Excepté là où spécifié autrement, la license de ce document est décrite en tant que https://creativecommons.org/licenses/by-nc-nd/4.0/