Export citation

Show simple item record

dc.contributor.authorKaimakamis, George*
dc.contributor.authorArvanitoyeorgos, Andreas*
dc.date.accessioned2021-02-11T14:29:27Z
dc.date.available2021-02-11T14:29:27Z
dc.date.issued2020*
dc.date.submitted2020-01-30 16:39:46*
dc.identifier43606*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/48494
dc.description.abstractThe present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.*
dc.languageEnglish*
dc.subjectQA1-939*
dc.subjectQ1-390*
dc.subject.otherwarped products*
dc.subject.othervector equilibrium problem*
dc.subject.otherLaplace operator*
dc.subject.othercost functional*
dc.subject.otherpointwise 1-type spherical Gauss map*
dc.subject.otherinequalities*
dc.subject.otherhomogeneous manifold*
dc.subject.otherfinite-type*
dc.subject.othermagnetic curves*
dc.subject.otherSasaki-Einstein*
dc.subject.otherevolution dynamics*
dc.subject.othernon-flat complex space forms*
dc.subject.otherhyperbolic space*
dc.subject.othercompact Riemannian manifolds*
dc.subject.othermaximum principle*
dc.subject.othersubmanifold integral*
dc.subject.otherClifford torus*
dc.subject.otherD’Atri space*
dc.subject.other3-Sasakian manifold*
dc.subject.otherlinks*
dc.subject.otherisoparametric hypersurface*
dc.subject.otherEinstein manifold*
dc.subject.otherreal hypersurfaces*
dc.subject.otherKähler 2*
dc.subject.other*-Weyl curvature tensor*
dc.subject.otherhomogeneous geodesic*
dc.subject.otheroptimal control*
dc.subject.otherformality*
dc.subject.otherhadamard manifolds*
dc.subject.otherSasakian Lorentzian manifold*
dc.subject.othergeneralized convexity*
dc.subject.otherisospectral manifolds*
dc.subject.otherLegendre curves*
dc.subject.othergeodesic chord property*
dc.subject.otherspherical Gauss map*
dc.subject.otherpointwise bi-slant immersions*
dc.subject.othermean curvature*
dc.subject.otherweakly efficient pareto points*
dc.subject.othergeodesic symmetries*
dc.subject.otherhomogeneous Finsler space*
dc.subject.otherorbifolds*
dc.subject.otherslant curves*
dc.subject.otherhypersphere*
dc.subject.other??-space*
dc.subject.otherk-D’Atri space*
dc.subject.other*-Ricci tensor*
dc.subject.otherhomogeneous space*
dc.titleGeometry of Submanifolds and Homogeneous Spaces*
dc.typebook
oapen.identifier.doi10.3390/books978-3-03928-001-8*
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0*
virtual.oapen_relation_isPublishedBy.publisher_nameMDPI - Multidisciplinary Digital Publishing Institute
virtual.oapen_relation_isPublishedBy.publisher_websitewww.mdpi.com/books
oapen.relation.isbn9783039280001*
oapen.relation.isbn9783039280018*
oapen.pages128*
oapen.edition1st*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/