Export citation

Show simple item record

dc.contributor.authorMichael R. W. Dawson*
dc.date.accessioned2021-02-11T10:26:12Z
dc.date.available2021-02-11T10:26:12Z
dc.date.issued2018*
dc.date.submitted2018-08-29 23:26:41*
dc.identifier27511*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/43847
dc.description.abstractPreviously, artificial neural networks have been used to capture only the informal properties of music. However, cognitive scientist Michael Dawson found that by training artificial neural networks to make basic judgments concerning tonal music, such as identifying the tonic of a scale or the quality of a musical chord, the networks revealed formal musical properties that differ dramatically from those typically presented in music theory. For example, where Western music theory identifies twelve distinct notes or pitch-classes, trained artificial neural networks treat notes as if they belong to only three or four pitch-classes, a wildly different interpretation of the components of tonal music. Intended to introduce readers to the use of artificial neural networks in the study of music, this volume contains numerous case studies and research findings that address problems related to identifying scales, keys, classifying musical chords, and learning jazz chord progressions. A detailed analysis of the internal structure of trained networks could yield important contributions to the field of music cognition.*
dc.languageEnglish*
dc.subjectBF1-990*
dc.subject.otherWestern classical*
dc.subject.otherperceptrons*
dc.subject.otherextended chords*
dc.subject.othercircle of fifths*
dc.subject.otherscales*
dc.subject.othertonal harmony*
dc.subject.otherColtrane*
dc.titleConnectionist Representations of Tonal Music: Discovering Musical Patterns by Interpreting Artificial Neural Networks*
dc.typebook
oapen.identifier.doi10.15215/aupress/9781771992206.01*
oapen.relation.isPublishedBy6b1b8af7-79e4-4b18-b297-b983df0f073f*
virtual.oapen_relation_isPublishedBy.publisher_nameAthabasca University Press
virtual.oapen_relation_isPublishedBy.publisher_websitehttp://www.aupress.ca/
oapen.relation.isbn9781771992206*
oapen.relation.isbn9781771992220*
oapen.relation.isbn9781771992213*
oapen.pages312*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/