Show simple item record

dc.contributor.authorKoller, Martin*
dc.date.accessioned2021-02-11T07:50:06Z
dc.date.available2021-02-11T07:50:06Z
dc.date.issued2020*
dc.date.submitted2020-06-09 16:38:57*
dc.identifier46094*
dc.identifier.urihttps://directory.doabooks.org/handle/20.500.12854/40339
dc.description.abstractNowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts.*
dc.languageEnglish*
dc.subjectTP248.13-248.65*
dc.subjectT1-995*
dc.subject.classificationbic Book Industry Communication::T Technology, engineering, agriculture::TC Biochemical engineering::TCB Biotechnologyen_US
dc.subject.otherCupriavidus necator*
dc.subject.otheralginate*
dc.subject.othertissue engineering*
dc.subject.otherPAT*
dc.subject.othersimulation*
dc.subject.otherterpolyester*
dc.subject.otherhigh cell density cultivation*
dc.subject.otherprocess simulation*
dc.subject.otherselective laser sintering*
dc.subject.othergaseous substrates*
dc.subject.othermicroaerophilic*
dc.subject.otherin-line monitoring*
dc.subject.otherPseudomonas sp.*
dc.subject.otheradditive manufacturing*
dc.subject.otherfed-batch*
dc.subject.otherterpolymer*
dc.subject.otheron-line*
dc.subject.otherbubble column bioreactor*
dc.subject.otherbiopolymer*
dc.subject.otherfused deposition modeling*
dc.subject.otherbiomaterials*
dc.subject.otherpolyhydroxyalkanoate (PHA)*
dc.subject.otherPseudomonas putida*
dc.subject.otherfed-batch fermentation*
dc.subject.otherblends*
dc.subject.otherupstream processing*
dc.subject.otherwound healing*
dc.subject.otheractivated charcoal*
dc.subject.otherdownstream processing*
dc.subject.otherArchaea*
dc.subject.otherpolyhydroxyalkanoates processing*
dc.subject.otherfilm*
dc.subject.otherbioreactor*
dc.subject.othermedium-chain-length polyhydroxyalkanoate (mcl-PHA)*
dc.subject.otherpoly(3-hydroxybutyrate-co-4-hydroxybutyrate)*
dc.subject.otherRalstonia eutropha*
dc.subject.otherhydrolysate detoxification*
dc.subject.otherextremophiles*
dc.subject.otherPoly(3-hydroxybutyrate)*
dc.subject.otherprocess analytical technologies*
dc.subject.otherPHA composition*
dc.subject.otherCOMSOL*
dc.subject.othernon-Newtonian fluid*
dc.subject.othertequila bagasse*
dc.subject.otherbiopolyester*
dc.subject.otherbiosurfactants*
dc.subject.otherHaloferax*
dc.subject.otherPHA*
dc.subject.otherphenolic compounds*
dc.subject.otherpolyhydroxybutyrate*
dc.subject.otherPHB*
dc.subject.otherin-line*
dc.subject.otherPseudomonas*
dc.subject.otherhaloarchaea*
dc.subject.otherplant oil*
dc.subject.otherPHA processing*
dc.subject.otherbioeconomy*
dc.subject.otherdelivery system*
dc.subject.otherP(3HB-co-3HV-co-4HB)*
dc.subject.otherproductivity*
dc.subject.otherelectrospinning*
dc.subject.othercyanobacteria*
dc.subject.otherwaste streams*
dc.subject.otherpolyhydroxyalkanoates*
dc.subject.otheroxygen transfer*
dc.subject.otherpolyhydroxyalkanoate*
dc.subject.otherbiomedical application*
dc.subject.otherphoton density wave spectroscopy*
dc.subject.othercarbon dioxide*
dc.subject.othersalinity*
dc.subject.otherPDW*
dc.subject.otherrheology*
dc.subject.otherhalophiles*
dc.subject.otherfeedstocks*
dc.subject.otherhigh-cell-density fed-batch*
dc.subject.otherbiomedicine*
dc.subject.otherprocess engineering*
dc.subject.otherbioprocess design*
dc.subject.otherviscosity*
dc.subject.othercomputer-aided wet-spinning*
dc.subject.othermicroorganism*
dc.subject.otherCupriavidus malaysiensis*
dc.subject.otherpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB)*
dc.titleAdvances in Polyhydroxyalkanoate (PHA) Production, Volume 2*
dc.typebook
oapen.identifier.doi10.3390/books978-3-03928-641-6*
oapen.relation.isPublishedBy46cabcaa-dd94-4bfe-87b4-55023c1b36d0*
oapen.relation.isbn9783039286416*
oapen.relation.isbn9783039286409*
oapen.pages202*
oapen.edition1st*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/